Recursion

Recursion is when a function can call itself; either directly or indirectly.

¢ Direct recursion is when a function calls itself

Functionl

\V/

¢ Indirect recursion is when a function calls another function; and the process can
later call one of the prior functions; functionl calls functionZ which then calls
functionl.

Functionl (::> Function2

Recursion must have

e Aterminating point and

e The algorithm of the recursion must move to that point.
The following is an example of a factorial function.
51'is 5*4*3*2*1

5! can also be thought of as 5 * 4!
4! can be thought of as 4 * 3! And so forth

using namespace std;
#include <iostream>

int factorial(int n);
int main ()
{intn =5;

cout << factorial(5); /[Initial value of 5!
return O;

¥

int factorial(int n)
{if (n==1) // The bottom or terminating point
return (1);
else return(factorial(n-1)*n); //Recursion occurs here !! The function calls itself

/[The algorithm now multiplies n*(n-1)!

The next section shows how the stack works for a factorial call for 3!.

Pushes onto stack like a cafeteria stack of trays

Current Activation (call #1)
{n | Location 2 | Valueis 3 |
factorial | Location 1 | Unknown so far but
will be 3 * 21

Pushes onto stack like a cafeteria stack of trays

Current Activation (call #2)
[n | Location4 | Valueis 2 |
factorial | Location 3 | Unknown so far but
will be 2 * 11

Pushes onto stack like a cafeteria stack of trays
Current Activation (call #3) I

[n | Location 6 | Valueis |

| factorial | Location 5 | Returns a value of |

[Memory Talue identifier
location
4
3
3 n
Unknown so far but factorial
will be 3 * 2!
Menory Value identifier
location
B n
Unknown so far but factorial
| will be 2 * 1!
3 n
Unknown so far but factorial
will be 3 + 2!
Memory Value identifier
location
1 n
Returns a wvalue of factorial
1
4 2 n
3 Unknown so far but factorial
will be 2 * 1!
2 3 n
1 Unknown so far but factorial
will be 3 * 2!

Paps off the stack like a cafeteria stack of trays

Returns to Prior Activation (call #2)

Menory Value identifier ;
location [n | Location4 | Valueis 2 |
[1 n
5 e R R L | tactorial factorial | Location 3 | Returns a value of

1

5 - / 1*31

Returns a wvalue of factorial

2
2 3 n :
¥ Unknown so tar but | factorial Notice that values on the stack are not deleted;

will be 3 * 2! this fact is a major reason that you must initialize

E variables!!!
Menory Value identifier
location
[1 n :
5 Returns a value of | factorial Paps off the stack like a cafeteria stack of trays
. é Returns to Prior Activation (call #1)
n

3 Ret 1 f | factorial - -

5 SRS SRR S [n | Location 2 | Valueis 3 |

|3 n /
| Returns a value of | factorial factorial | Location 1 | Returns a value of
6 (3 % 2 '\ 3%

