Sorting and Searching

Some examples are included for reference, but may more exist.

void swapslots (emprecord employee[], int size, int i,
{ emprecord temp;

temp=employee [1i]; < function does not know which
employee[i]=employee[]j];

sorting algorithm has called it or
employee[j]=temp; which fields have been compared
} to swap.

int 5) e This function exchanges the objects
in slots | and j of the array. This

void bubblesortarrayversionl (emprecord employeel],
{ int 1i;
bool swappedrecord;

int size)

e This bubble sort function is basically
do < the same used in the first class.
{

swappedrecord =false;
for (i=0;i<(size-1);i++)
{
if (employee[i] .name > employee[i+1] .name)
{ swapslots(employee, size, 1, i+1);
swappedrecord=true;
}i
}
}

while (swappedrecord !=false);

void bubblesortarrayversion2 (emprecord employeel],
{ int 1i;
bool swapped;

int size)

e This is another version of a bubble
sort.

for (int i = 0; 1 < size; ++1) <
{

bool swapped false;

for (int j = 0; J < size - (i+1l); ++73)

if (employee[i].name > employee[i+1l].name)
{
swapslots (employee, size, J, Jj+1);
swapped = true;

if (!swapped) break;

void SelectionSort (emprecord employeel[], int size)
string name;

{

int i1, startscan, min; <
string minvalue;
for (startscan = 0; startscan < (size-1); startscan++)
{
min = startscan;
minvalue=employee[startscan] .name;
for (int j = startscan+l; j < (size); j++)

{
if (employee[j].name < name)
{
min = j;
minvalue=employee[]j].name;

}

swapslots (employee, size, startscan, min);

This is a selection sort.

//useful for small and mostly sorted lists
//expensive to move array elements

void InsertionSort (emprecord employeel[], int size) e

{ emprecord save;

for (int 1 = 1; 1 < size; ++1)
{
bool inplace = true;
int 3 = 0;

for (; J < i; ++3)

{

if (employee[i] .name < employee[i+l].name)

This is an insertion sort.

//useful for small and mostly
sorted lists

//expensive to move array
elements

It finds the slot to insert and
moves the rest of the array to
the next slot.

{
inplace = false;
break;

}

if (!'inplace)
{
save = employeel[il];
for (int k = i; k > j; --k)
{
employee[k] = employeelk-1];
}

employee[]] = save;

void binarySearch (emprecord employee[], int size)
{ string name;
cout << "\n\n Enter Name to search for ";
getline (cin, name) ;

int i, first=0,
last=size-1,
middle,
position=-1;
bool found =false, exit=false;
while (!'found && first <= last)
{ middle=(first+last)/2;

// Calculate midpoint of the remaining section of the array to
be searched

cout << "First : "<< first<< " Last : "<< last<<" Middle : "<< middle<<endl;
if (employee[middle] .name==name)

{ found=true;

position=middle;
}

else 1if (employee[middle].name>name) // The value is he lower half of the Calculate midpoint of

the remaining section of the array to be searched
last=middle-1;
else first=middle+1;

| This is an insertion sort.
if (!found)
cout <<"\n\nName not found\n\n"; //usefullfor small and mostly
else cout <<"\n\nName found at slot "<<position<<endl; sorted l}StS
cin.get () ; //expensive to move array
}; elements

It finds the slot to insert and
moves the rest of the array to
the next slot.

