using namespace std;
#include <iostream>
#include <string>

rock paper scissors.

types.

far as the compiler is
concerned.

These are the layouts for the
prototypes for the classes of

These are user defined data

The functions getinfo() are
functions which are part of
each of the classes, but they
are three different functions as

//
class rockrecord
{
public:
void getinfo();
string name;
int power;
bool altweapon;
|3
//
class paperrecord
{
public:
void getinfo();
string name;
int power;
bool altweapon;
|3
//
class scissorsrecord
{
public:
void getinfo();
string name;
int power;
bool altweapon;
|3

void match(rockrecord rockofages, paperrecord toil);
void match(rockrecord rockofages, scissorsrecord edcutup);
void match(scissorsrecord edcutup, paperrecord toil);

These are overloaded
function names since they
have the same name but for
different user defined
datatypes.

This entire page is just the
prototytpes for the rest of the
program.

/1




int main()

{

inti;

This the main program.

rockrecord rockofages;
paperrecord toil;

scissorsrecord edcutup; \

edcutup.getinfo();

These statements actually declare
variables which of the datatype
previously defined by the user.

rockofages.getinfo();
toil.getinfo();

match(rockofages, edcutup);
match(rockofages, toil);
match(edcutup, toil);

cin >>i;
return (0);

These actually call (activate or invoke
are other terms ) the functions inside
each datatype previously defined by

the user.

These actually call (activate or invoke
are other terms ) the overloaded
functions.




/l

void rockrecord::getinfo()

{ ) These are the function
char userchoice; definitions which has the
cout << " Enter name for rock "; . i
cin >> name; actual coc.je which executes if
cout << " Enter power ==>": the functions are called or
cin >> power; «— | invoked.
cout << " Alt weapon needed ==>";
cin >> userchoice;
if (userchoice =="Y")
altweapon = true;
else altweapon = false;
}
//
void paperrecord::getinfo()
{ The altweapon for each class might be:
char userchoice;
cout << " Enter name for paper "; Rockrecord has a paper shredder for
cin >> name; dealing with paper.
cout << " Enter power ==>";
cin >> power; Scissorsrecord might have a jackhammer for
cout << " Alt weapon needed ==>"; dealing with rocks.

cin >> userchoice;

if (userchoice =="Y')
altweapon = true;

else altweapon = false;

Paperrecord might have a special metal
cover or a rock to break scissors.

}
//
void scissorsrecord::getinfo()
{
char userchoice;
cout << " Enter name scissors ";
cin >> name;
cout << " Enter power ==>";
cin >> power;
cout << " Alt weapon needed ==>";
cin >> userchoice;
if (userchoice =="Y")
altweapon = true;
else altweapon = false;
}



/l

void match(rockrecord rockofages, paperrecord toil)

{

cout << "\nRock loses to paper\n\n";

}

/1

void match(rockrecord rockofages, scissorsrecord edcutup)

{

cout << "\nRock breaks scissors\n\n";

}
/1

These are the definitions of the
overloaded functions.

They are overloaded since the datatypes
of each function are different; but the
name of the function is the same.

As far as the compiler is concerned,
these are three different functions.

void match(scissorsrecord edcutup, paperrecord toil)

{

cout << "\nScissors cuts paper\n\n";

}




